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J. Phys. A: Math. Gen. 15 (1982) L501-LSO5. Printed in Great Britain 

LETTER TO THE EDITOR 

Phase transition in a lattice gas with extended hard core 

J Orban and D Van Belle? 
University of Brussels, Brussels, Belgium 

Received 10 May 1982 

Abstract. Numerical results have been obtained by several methods for a hard core 
two-dimensional lattice gas on a plane-square lattice, involving exclusion of first, second 
and third neighbours. They strongly suggest the existence of a first-order phase transition. 

The existence of phase transitions in lattice gases with hard cores has been extensively 
investigated since the late sixties and recent contributions by Baxter (1980) on the 
inrerucrions-round-a-face model (IRF) have revived interest in the field. While it seems 
fairly well established that systems with exclusions limited to first-neighbouring sites 
display a lambda-type transition, the nature of the transitions occurring in models 
involving a more extended hard core is still unclear and it is the aim of this paper to 
analyse one particular model of that type. 

The molecules are placed on a plane square lattice; the presence of one of them 
on a particular site forbids the simultaneous occupancy of that same site and of its 
first, second and third neighbours, by another molecule. This model was studied 
previously by Bellemans and Nigam (1966,1967) and by Bellemans and Orban (1966) 
through various numerical methods, with the conclusion that it presents a rather strong 
phase change. Subsequently, the existence of a transition was rigorously proved by 
Heilmann and Praestgaard (1974), although its nature remained undefined. We 
present below some new numerical data which, in our opinion, suggest this transition 
to be a first-order one. 

The matrix method of Kramers and Wannier is a very practical one for studying 
‘cylindrical’ lattices of infinite length and finite circumference of n sites, in an exact 
way (from the numerical point of view). Due to the particular shape of the core, n 
has to be here a multiple of 5 ,  in order to allow the system to reach the close-packing 
configuration at infinite pressure. The cases n = 5 ,  10 and n = 15 were respectively 
considered by Bellemans and Nigam (1966) and Bellemans and Orban (1966). We 
have now extended the computations to the case n = 20. Note that the dimension of 
the matrices involved is, in principle, equal to the total number of configurations 
allowed on a double ring of sites; however, the largest eigenvalue (which is the only 
relevant one) may be obtained from a reduced matrix, the dimension of which is equal 
to the total number of classes of equivalent configurations (under rotation and inver- 
sion). From the data listed in table 1, it is quite clear that the case n = 25 is presently 
out of reach. 

Figure 1 shows the pressure p plotted against the density p, for n = 5 ,  10, 15 and 
20, while figure 2(u) shows kT ap/ak (i.e. essentially the compressibility) against the 

t Boursier IRSIA. 

0305-4470/82/090501+ 05$02.00 @ 1982 The Institute of Physics L501 



L502 Letter to the Editor 

Table 1. Number of configurations and of symmetry classes for single and double rings 
of n sites. 

Single ring Double ring 
n Configurations Classes Configurations Classes 

5 6 2 21 4 
10 46 6 441 34 
15 309 19 9 321 353 
20 2090 75 196 333 5 140 
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Figure 1. Plot of p / k T  against p .  Matrix method: 0, n = 20; X, n = 15; 0, n = 10; +, 
n = 5. 0, High density [1/1] Pad6 approximant; - - -, low density [5/5] Pad6 approximant; 
- , Rushbrooke-Scoins method. 

chemical potential p. As n increases, there is a substantial flattening of that part of 
the pressure curve extending between p ==0.16 and 0.19 (close packing density: 
p , , = f ) ;  this corresponds in turn to a peak in kT ap/ap which sharpens extremely 
rapidly with n. Table 2 summarises some characteristic data of that peak for n = 10, 
15 and 20 (the case n = 5  shows no peak and is therefore omitted). The first three 
eatries specify its location (p, p, p) which seems to vary little with n. The fourth entry 
gives the height of the peaks shown in figure 2(a) :  it increases dramatically with n, 
almost like n2. At the same time, the width of the peaks, estimated by means of the 
difference between the chemical potentials pleft, pright, corresponding to their left and 
right inflexion points (fifth and sixth entries of table 2), shrinks almost like n-*. It 
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FTpre 2. ( U )  Plot of kTap/ap against p/kT (matrix method; 0, n =20, x, n = 15, 0, 
n = 10). (b )  Plot of pIcft and phat against l / n  (0 left, 0 right). 

Table 2. Thermodynamic properties associated with the compressibility peak. 

- - - - - - - - 5 
10 3.635 0.7405 0.1746 0.0430 3.366 3.931 0.1640 0.1860 
15 3.668 0.7426 0.1757 0.0879 3.554 3.786 0.1666 0.1850 
20 3.674 0.7424 0.1761 0.1580 3.615 3.733 0.1677 0.1844 

RS method 3.640 0.738 density gap for 0.160<p C0.192 (Bellemans and Nigam 1967) 

seems therefore that these peaks, keeping their surface approximately constant, might 
rapidly evolve towards a delta function as n -* 00, which would implicate a first-order 
phase transition. At any rate, the dependence in n observed here disagrees completely 
with what is known for two-dimensional lattice models exhibiting a lambda transition: 
in such cases, the maximum height of kT ap/aw grows like In n, i.e. much more slowly 
(Runnels 1965). Furthermore, the densities mert, prieht (last two entries of table 2), 
corresponding respectively to Fleft, pripht, should extrapolate to the same value for 
n -* CO, if the transition was of the lambda type. This is very unlikely as shown in figure 
2(b), where these quantities are plotted against n-’.  (On the other hand, klcft and 
hlieht should converge to the same value as n + 00, whatever the nature of the transition, 
and indeed, by plotting them against n-’, they both appear to tend to 3.67-3.70.) 
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Another clue for discriminating between first-order and lambda transitions is the 
following: the points of maximum curvature, B1, Bz of the p against p curve (in 
reduced units plp,,,, p/kT) behave very differently as n becomes infinite, as shown 
in figure 3: (i) for a first-order transition, their abscissae (chemical potentials) become 
identical and the curvatures infinite, (ii) for a lambda transition, their abscissae remain 
distinct and the curvature finite. Table 3 gives the chemical potentials, densities and 
curvatures of B1, Bz for n = 10,15 and 20. On the one hand, p1 and pz values, when 
plotted against n -', extrapolate quite nicely towards 3.6& and 3.690 respectively; on 
the other hand, the curvatures grow extremely rapidly with n, almost like n4. This 
provides reasonable evidence, in our opinion, for a first-order transition. 

v't - - - - 
V l  V 2  

Figure 3. Schematic plot of the evolution of the p against fi  curve as n goes to infinity, 
for first-order and lambda transitions respectively (Bl, B2 are points of maximum 
curvature). 

Table 3. Points of maximum curvature along the p/p,- against p / k T  curve (points B1, 

B2 of figure 3). 

n f i d k T  PI Curvature fiJkT p2 Curvature 

10 3.3600 0.1638 0.2475 3.9282 0.1862 0.3053 
15 3.5428 0.1659 1.262 3.7975 0.1857 1.353 
20 3.5992 0.1660 3.717 3.7492 0.1861 3.850 

A different approach to the problem of hard core lattice gases, originated by Gaunt 
and Fisher (1965), makes use of low and high activity or density series. The usual 
cluster sums bl and P k ,  involved respectively in low activity and density expansions, 
were previously derived up to I = 5 and k = 4 by Bellemans and Nigam (1967); we 
have extended them up to 1 = 11 and k = 10; see table 4. Similarly the coefficients 
a1 and f f k  involved in the high activity and density expansions, i.e. 

p/kT =&ln z +E a,z-') ,  z = exp(p/kT), 

plkT = +(-ln x +E f f k x  '), x = 1 -5p, 

have been evaluated up to I = 4 and k = 3. The [ 5 / 5 ]  and [1/1] Pad6 approximants, 
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Table 4. Coefficients of the high and low density expansions (ak and &) and of the high 
and low activity expansions (a1 and 6 , )  of the pressure. 

k or 1 5 ffk 5 lal ksk 6 I 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 1 -13 
12 11 -97 

236 199 -553 
4567 -2 781 

-13 873 
-74 341 
-427 321 

-2 491 549 
-14 068 453 
-75 888 787 

1 

-13 

-3 521 
205 

63 466 

22 423 304 

8 463 267 016 

3 323 928 207 970 

-1 180 075 

-432 957 233 

-167 059 758 328 

in p and x respectively, are shown in figure 1; their behaviour again suggests the 
equation of state to consist of two different branches separated by a density gap, 
between p -0.16 and 0.19. 

To be complete, figure 1 includes the p against p curve obtained by Bellemans 
and Nigam (1967) by means of the Rushbrooke-Scoins method (see also last line of 
table 2). 

Several observations have been made above, all of them pointing towards the 
existence of a density gap in the equation of state of the model. Although none of 
them may be considered as a proof, we nevertheless shall conclude, to a high degree 
of confidence, that this model exhibits a first-order transition, which recalls the one 
occurring for hard spheres. 

Similar investigations are under way for other lattice models of the same kind. 

We wish to thank Professor A Bellemans for stimulating discussions. 
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