Phase transition in a lattice gas with extended hard core

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L501
(http://iopscience.iop.org/0305-4470/15/9/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Phase transition in a lattice gas with extended hard core

J Orban and D Van Belle \dagger
University of Brussels, Brussels, Belgium

Received 10 May 1982

Abstract

Numerical results have been obtained by several methods for a hard core two-dimensional lattice gas on a plane-square lattice, involving exclusion of first, second and third neighbours. They strongly suggest the existence of a first-order phase transition.

The existence of phase transitions in lattice gases with hard cores has been extensively investigated since the late sixties and recent contributions by Baxter (1980) on the interactions-round-a-face model (IRF) have revived interest in the field. While it seems fairly well established that systems with exclusions limited to first-neighbouring sites display a lambda-type transition, the nature of the transitions occurring in models involving a more extended hard core is still unclear and it is the aim of this paper to analyse one particular model of that type.

The molecules are placed on a plane square lattice; the presence of one of them on a particular site forbids the simultaneous occupancy of that same site and of its first, second and third neighbours, by another molecule. This model was studied previously by Bellemans and Nigam (1966, 1967) and by Bellemans and Orban (1966) through various numerical methods, with the conclusion that it presents a rather strong phase change. Subsequently, the existence of a transition was rigorously proved by Heilmann and Praestgaard (1974), although its nature remained undefined. We present below some new numerical data which, in our opinion, suggest this transition to be a first-order one.

The matrix method of Kramers and Wannier is a very practical one for studying 'cylindrical' lattices of infinite length and finite circumference of n sites, in an exact way (from the numerical point of view). Due to the particular shape of the core, n has to be here a multiple of 5 , in order to allow the system to reach the close-packing configuration at infinite pressure. The cases $n=5,10$ and $n=15$ were respectively considered by Bellemans and Nigam (1966) and Bellemans and Orban (1966). We have now extended the computations to the case $n=20$. Note that the dimension of the matrices involved is, in principle, equal to the total number of configurations allowed on a double ring of sites; however, the largest eigenvalue (which is the only relevant one) may be obtained from a reduced matrix, the dimension of which is equal to the total number of classes of equivalent configurations (under rotation and inversion). From the data listed in table 1, it is quite clear that the case $n=25$ is presently out of reach.

Figure 1 shows the pressure p plotted against the density ρ, for $n=5,10,15$ and 20 , while figure $2(a)$ shows $k T \partial \rho / \partial \mu$ (i.e. essentially the compressibility) against the
\dagger Boursier IRSIA.

Table 1. Number of configurations and of 'symmetry classes for single and double rings of n sites.

Single ring		Double ring		
n	Configurations	Classes	Configurations	Classes
5	6	2	21	4
10	46	6	441	34
15	309	19	9327	353
20	2090	75	196333	5140

Figure 1. Plot of $p / k T$ against ρ. Matrix method: $\quad n=20 ; \times, n=15 ; \bigcirc, n=10 ;+$, $n=5$. \square, High density [1/1] Padé approximant; ---, low density [5/5] Padé approximant; -, Rushbrooke-Scoins method.
chemical potential μ. As n increases, there is a substantial flattening of that part of the pressure curve extending between $\rho \approx 0.16$ and 0.19 (close packing density: $\rho_{\max }=\frac{1}{5}$); this corresponds in turn to a peak in $k T \partial \rho / \partial \mu$ which sharpens extremely rapidly with n. Table 2 summarises some characteristic data of that peak for $n=10$, 15 and 20 (the case $n=5$ shows no peak and is therefore omitted). The first three entries specify its location (μ, p, ρ) which seems to vary little with n. The fourth entry gives the height of the peaks shown in figure $2(a)$: it increases dramatically with n, almost like n^{2}. At the same time, the width of the peaks, estimated by means of the difference between the chemical potentials $\mu_{\text {left }}, \mu_{\text {right }}$, corresponding to their left and right inflexion points (fifth and sixth entries of table 2), shrinks almost like n^{-2}. It

Figure 2. (a) Plot of $k T \partial \rho / \partial \mu$ against $\mu / k T$ (matrix method; $\quad n=20, \times, n=15, \bigcirc$, $n=10$). (b) Plot of $\rho_{\text {left }}$ and $\rho_{\text {right }}$ against $1 / n$ (O left, \bigcirc right).

Table 2. Thermodynamic properties associated with the compressibility peak.

n	$\mu / k T$	$p / k T$	ρ	$k T \partial \rho / \partial \mu$	$(\mu / k T)_{\text {left }}$	$(\mu / k T)_{\text {right }}$	$\rho_{\text {left }}$	$\rho_{\text {right }}$
5	-	-	-	-	-	-	-	-
10	3.635	0.7405	0.1746	0.0430	3.366	3.931	0.1640	0.1860
15	3.668	0.7426	0.1757	0.0879	3.554	3.786	0.1666	0.1850
20	3.674	0.7424	0.1761	0.1580	3.615	3.733	0.1677	0.1844
RS method	3.640	0.738	density gap for $0.160<\rho<0.192$ (Bellemans and Nigam 1967)					

seems therefore that these peaks, keeping their surface approximately constant, might rapidly evolve towards a delta function as $n \rightarrow \infty$, which would implicate a first-order phase transition. At any rate, the dependence in n observed here disagrees completely with what is known for two-dimensional lattice models exhibiting a lambda transition: in such cases, the maximum height of $k T \partial \rho / \partial \mu$ grows like $\ln n$, i.e. much more slowly (Runnels 1965). Furthermore, the densities $\rho_{\text {left }}, \rho_{\text {right }}$ (last two entries of table 2), corresponding respectively to $\mu_{\text {left }}, \mu_{\text {right }}$, should extrapolate to the same value for $n \rightarrow \infty$, if the transition was of the lambda type. This is very unlikely as shown in figure $2(b)$, where these quantities are plotted against n^{-1}. (On the other hand, $\mu_{\text {left }}$ and $\mu_{\text {right }}$ should converge to the same value as $n \rightarrow \infty$, whatever the nature of the transition, and indeed, by plotting them against n^{-2}, they both appear to tend to 3.67-3.70.)

Another clue for discriminating between first-order and lambda transitions is the following: the points of maximum curvature, $\mathrm{B}_{1}, \mathrm{~B}_{2}$ of the ρ against μ curve (in reduced units $\rho / \rho_{\max }, \mu / k T$) behave very differently as n becomes infinite, as shown in figure 3: (i) for a first-order transition, their abscissae (chemical potentials) become identical and the curvatures infinite, (ii) for a lambda transition, their abscissae remain distinct and the curvature finite. Table 3 gives the chemical potentials, densities and curvatures of $\mathrm{B}_{1}, \mathrm{~B}_{2}$ for $n=10,15$ and 20 . On the one hand, μ_{1} and μ_{2} values, when plotted against n^{-2}, extrapolate quite nicely towards 3.68_{2} and 3.69_{0} respectively; on the other hand, the curvatures grow extremely rapidly with n, almost like n^{4}. This provides reasonable evidence, in our opinion, for a first-order transition.

Figure 3. Schematic plot of the evolution of the ρ against μ curve as n goes to infinity, for first-order and lambda transitions respectively ($\mathbf{B}_{1}, \mathbf{B}_{2}$ are points of maximum curvature).

Table 3. Points of maximum curvature along the $\rho / \rho_{\text {max }}$ against $\mu / k T$ curve (points B_{1}, B_{2} of figure 3).

n	$\mu_{1} / k T$	ρ_{1}	Curvature	$\mu_{2} / k T$	ρ_{2}	Curvature
10	3.3600	0.1638	0.2475	3.9282	0.1862	0.3053
15	3.5428	0.1659	1.262	3.7975	0.1857	1.353
20	3.5992	0.1660	3.717	3.7492	0.1861	3.850

A different approach to the problem of hard core lattice gases, originated by Gaunt and Fisher (1965), makes use of low and high activity or density series. The usual cluster sums b_{l} and β_{k}, involved respectively in low activity and density expansions, were previously derived up to $l=5$ and $k=4$ by Bellemans and Nigam (1967); we have extended them up to $l=11$ and $k=10$; see table 4 . Similarly the coefficients a_{l} and α_{k} involved in the high activity and density expansions, i.e.

$$
\begin{array}{lc}
p / k T=\frac{1}{5}\left(\ln z+\sum a_{l} z^{-t}\right), & z=\exp (\mu / k T), \\
p / k T=\frac{1}{5}\left(-\ln x+\sum \alpha_{k} x^{k}\right), & x=1-5 \rho,
\end{array}
$$

have been evaluated up to $l=4$ and $k=3$. The [5/5] and [1/1] Padé approximants,

Table 4. Coefficients of the high and low density expansions (α_{k} and β_{k}) and of the high and low activity expansions (a_{i} and b_{l}) of the pressure.

k or l	$5 \alpha_{k}$	$5 l a_{l}$	$k \beta_{k}$	$l b_{l}$
1	12	1	-13	
2	12	11	-97	-13
3	236	199	-553	205
4		4567	-2781	-3521
5		-13873	63466	
6		-74341	-1180075	
7		-427321	22423304	
8		-2491549	-432957233	
9		-14068453	8463267016	
10		-75888787	-167059758328	
11			3323928207970	

in ρ and x respectively, are shown in figure 1 ; their behaviour again suggests the equation of state to consist of two different branches separated by a density gap, between $\rho \simeq 0.16$ and 0.19 .

To be complete, figure 1 includes the p against ρ curve obtained by Bellemans and Nigam (1967) by means of the Rushbrooke-Scoins method (see also last line of table 2).

Several observations have been made above, all of them pointing towards the existence of a density gap in the equation of state of the model. Although none of them may be considered as a proof, we nevertheless shall conclude, to a high degree of confidence, that this model exhibits a first-order transition, which recalls the one occurring for hard spheres.

Similar investigations are under way for other lattice models of the same kind.
We wish to thank Professor A Bellemans for stimulating discussions.

References

Baxter R J 1980 Exactly solved models in Fundamental Problems in Statistical Mechanics V ed E G D Cohen (Amsterdam: North-Holland) p 109
Bellemans A and Nigam R K 1966 Phys. Rev. Lett. 161038

- 1967 J. Chem. Phys. 462922

Bellemans A and Orban J 1966 Phys. Rev. Lett. 17908
Gaunt D S and Fisher M E 1965 J. Chem. Phys. 432840
Heilmann O J and Praestgaard E 1974 J. Phys. A: Math., Nucl. Gen. 71913
Runnels L K 1965 Phys. Rev. Lett. 15581

